Bergman uzayı

Matematiğin bir alt dalı olan karmaşık analizde, Bergman uzayı karmaşık düzlemin bir D bölgesinde tanımlı, D 'nin sınırında mutlak türevlenebilen holomorf fonksiyonlardan oluşan bir fonksiyon uzayıdır. Bu uzay ismini, Stefan Bergman isimli matematikçiden almıştır. Daha düzgün bir dille, Bergman uzayı olan , D üzerinde tanımlı ve p-normu sonlu olan holomorf fonksiyonlardan oluşmaktadır. Yani, eğer ise o zaman aşağıda verilen norm koşulu sağlanmalıdır:

gösterimindeki harfi fonksiyonun analitik (holomorf fonksiyonların analitikliği maddesine bakınız) olduğunu simgelemek için eklenmiştir ve bu gösterim Bergman uzayının tek gösterimi değildir. Kullanımının zorluk çıkarmayacağı düşünülerek de kullanılmaktadır. Bergman uzayları Banach uzayıdır. Bu sonuç, D 'nin tıkız bir K altkümesi üzerindeki şu kestirimin bir sonucu olarak elde edilebilir:

Bu yüzden, Lp(D) 'deki bir holomorf fonksiyonlar dizisinin yakınsaklığı ayrıca bu dizinin tıkız yakınsak olduğunu verir. Böylece, limit fonksiyonu da holomorftur.

p = 2 ise, o zaman bir doğuran çekirdekli Hilbert uzayıdır ve çekirdeği de Bergman çekirdeği tarafından belirlenir.

Kaynakça

  • Richter, Stefan (2001), "Bergman spaces", Hazewinkel, Michiel (Ed.), Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1556080104.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.