Sophie Germain
Marie-Sophie Germain (1 Nisan 1776, Paris - 27 Haziran 1831, Paris), Fransız asıllı matematikçi, fizikçi ve filozof.
Sophie Germain | |
---|---|
Doğum |
1 Nisan 1776 Rue Saint-Denis, Paris, Fransa |
Ölüm |
27 Haziran 1831 (55 yaşında) Paris, Fransa |
Diğer isim(ler)i | Auguste Antoine Le Blanc |
Etnik köken | Fransız |
Meslek | Matematikçi, fizikçi ve filozof |
İlk başlardaki aile ve toplum baskısına rağmen babasının kütüphanesinde bulunan kitaplar ve Lagrange, Legendre ve Gauss gibi ünlü matematikçiler ile gerçekleştirdiği mektuplaşmalar sayesinde eğitimini tamamladı. Elastiklik teori'sinin öncülerinden biri olarak konuyla ilgili yazdığı tez Paris Academy of Sciences'tan büyük bir ödül kazandırdı. Fermat'ın son teorisi hakkında çalışan matematikçilere kaynak sağladı ve onları yüzlerce yıllık destek sağladı. Kadın cinsiyetine olan ön yargılar sebebi ile kariyerini matematik üzerinden yapamadı fakat bağımsız olarak hayatı boyunca matematik üzerine çalıştı. Matematiğe yaptığı katkılarının hatırasına ölümünden 6 yıl sonra Göttingen Üniversitesi tarafından fahri doktorluk unvanı verildi. Ölümünün yüzüncüyıl yılında bir sokağa ve kız öğrenciler okuluna adı verildi. The Academy of Sciences her yıl The Sophie Germain Prize'ı onun hatırasına verir.
Önceki hayatı
Ailesi
1 Nisan 1776'da Paris'te, Fransa, Rue Saint-Denis evinde doğdu. Birçok kaynağa göre babası Ambroise-François zengin bir ipek tüccarıydı. Bazı kaynaklara göre ise babası kuyumcuydu. 1789'da orta sınıfı temsilen Etats-Generaux'a (sonradan the Constitutional Assembly olarak değişti) seçildi. Bu sebepten dolayı Sophie ve babası arasında çokça tartışma gerçekleşti ve temel sebebi babası ve onun politik ve filozof arkadaşları temel sebep idi. Gray'e göre babası Ambroise-François'in politik kariyeri sonrasında bankanın müdürü olması sayesinde aile, Sophie Germain'in yetişkin hayatında ona destek olabildi.
Marie-Sophie,ismi Angelique-Ambroise olan küçük bir kardeşe ve ismi Marie-Madeline olan kendinden daha büyük bir kardeşe sahiptir. Annesinin adı da Marie-Madeline idi. Bu Marie ön adlarını temel sebebi Sophie ile aynı sebep olabilirdi. Yeğeni Armand-Jacques (Marie-Madeline'nin oğlu) Sophie'nin ölümünden sonra onun bazı işlerini yayınladı.
Germain'in ailesi onun matematiğe olan bu ani ilgisinin bir kadına yakışmadığını savundu. Geceleri odasında çalışmak isteyen Germain'i engellemeye çalıştılar. Germain'i geceleri ders başında çalışırken uyuyakalmış bir biçimde bulduklarında çok endişelenmeye başladılar. Sonralarında ise annesi bu çalışmalarına gizlice destek verdi.
Matematikle tanışması
Germain 13 yaşında iken hapishane hisarının devrimsel atmosferi ile sur içinde kalmaya zorlandığını hissetti. Zaman geçirebilmek için babasının kütüphanesine yöneldi ve orada J.E. Montucla's nın L'Histoire des Mathematiques adlı kitabını buldu.
Arşimet'in ölümünün hikâyesi Sophie Germain'i matematiğe yönlendirdi. Germain eğer geometri bu kadar büyüye sahip bir şey ise onun üzerinde çalışmaya değer diye karar verdi. O zamanlarda geometri tamamı ile matematik olarak anılmaktaydı. Bundan sonra babasının kütüphanesindeki tüm matematik kitaplarına odaklandı hatta Latince ve Yunanca alfabelerden oluşan kitapları, Sir Isaac Newton ve Leonhard Euler'ın kitaplarını okuyabilmek için kendini eğitti. Etieene Bezout'un Traited'Arithmetique ve Jacques Atoine-Joseph Cousin'in kitaplarını okudu ve hoşuna gitti. Sonrasında kuzeni onu evinde ziyaret etti ve onu okuması için cesaretlendirdi.
Polytecnique Ekolü
1974'te Germain 18 yaşında iken the Ecole Polytechnique (okul) açıldı. Bir kadın olarak bu okula gidip derslere girmesi yasaklanmıştı fakat yeni sistem ile 'ders notları soran herkese açık' ibaresi vardı. Bu yeni metot ek olarak yazılı gözlem gerektiyordu. Germain ders notlarını edindi ve yaptıklarını fakülte üyesi olan Joseph Louis Lagrange'a göndermeye başladı. Notlarını korktuğundan dolayı eski bir öğrenci olan Monsieur Antoine-August Le Blanc olarak gönderiyordu ve bunu Gauss'a 'Kadın bilim insanlarıyla alay ediyorlardı' diye açıkladı. Lagrange M. LeBlanc'ın zekasını görünce onunla bir buluşma istedi ve bu Sophie'nin gerçek kimliğini açıklamaya zorladı. Sophie'nin şansına Lagrange onun kadın olmasını umursamadı ve Sophie'nin akıl hocalığını yapmaya başladı. Ayrıca Sophie'nin evini ziyaret etti ve ona moral verdi.
Sayılar teorisi öncesindeki işleri
Legendre ile mektuplaşmaları
Germain ilk başlarda 1798'de Adrien-Marie Legendre tarafından yayımlanan Essai sur la theorie des nomber yani sayı teorisi (aritmetik) ile ilgilenmeye başladı. Bu konuyu çalıştıktan sonra Legendre'ye bir mektup yazarak onun sayı teorisi hakkındaki fikirlerini yazdı (sonradan elastiklik oldu). Legendre Germain'in bazı yazılarını 'the Supplement' kitabının ikinci baskısında 'the Theorie des Nombres' olarak yayımladı. Theorie des Nomberes'a zekice yapılmış anlamına gelen tres ingenieuse adını verdi.
Gauss ile Mektuplaşmaları
Germain'in number teorisine ilgisi Carl Friedrich Gauss'un abidevi çalışması 'Disquistiones Arithmeticae' ile tekrar yenilendi. 3 yıllık çalışma, egzersiz ve kendi teorisini kanıtlama çabalarından sonra M. LeBlanc takma adı ile Gauss'a tekrar mektup yazdı. 21 Kasım 1804'te ilk mektubu Gauss Disquisitiones ve Fermat'ın Son Teoremi hakkında sunulmuştu. Mektupta Germain n=p-1 teoremini kanıtladığını ve p nin asal sayı formu olduğunu ve p=8k+7 olduğunu öne sürdü.Fakat teorisi zayıf varsayımlara dayanıyordu ve Gauss'un cevabında bu teori hakkında bir cevap yoktu.
1807 civarında Fransızlar Gauss'un yaşadığı Braunschweig işgal ediyorlardı. Germain Gauss hakkında endişelendi ve kaderinin Arşimet'e benzeyeceğini düşündüğünden General Pernety'ye yani bir aile dostuna mektup yazarak Gauss'un güvenliğinin sağlanmasını talep etti. General Pernety bir amirle bir tabur gönderdi ve Gauss'un güvenliğini sağladı. Döndüklerinde Gauss iyiydi fakat Sophie isminin söylenmesi onun aklını karıştırmıştı.
Olaydan 3 hafta sonra Germain gerçek kimliğini Gauss'a açıkladı ve Gauss cevap olarak; 'Benim saygın mektup arkadaşım M. LeBlanc'ın değişerek bu ünlü insan haline gelmesi. Hele o bir kadın iken ve onun cinsiyetinden dolayı bizim geleneklerimizin ve önyargılarımızının önündeki engelleri aşarak bir erkek gibi Number's teorideki karışık problemler ile uğraşması ve bunlara ek olarak bu engellerden bu kadar gizli bir şekilde geçebilmesi ve Sophie'nin şüphesiz olarak en asil cesarete sahip olması ve olagandışı zeki ve üstün zekalı olması karşısındaki şaşkınlık ve hayranlığımı nasıl açıklayabilirim.'
Gauss'un Olbers'e mektuplarında Germain'i samimi bir şekilde övdüğü görülür. 1807'deki aynı mektupta Sophie xn + yn 'nin h2 + nf2'nin formu olduğunundan bahseder ve ayrıca x + y 'nin de bu formda olduğunu belirtir. Gauss ise karşıt bir örnekle cevap verir: 1511 + 811 ifadesi h2 + 11f2 olarak yazılabilir fakat 15 + 8 yazılamaz.
Gauss Germain'i sıkça düşünse de mektuplara cevapları sıklıkla gecikirdi ve genellikle onun işlerini ayrıntılı olarak gözden geçirmezdi. Sonunda Sayılar Teorisi'ne ilgisi azaldı ve 1809'da mektuplaşmayı kestiler. Arkadaşlıklarına rağmen Germain ve Gauss hiçbir zaman tam olarak tanışmadı.
Elastiklik alanındaki çalışmaları
Germain'nin the Academy Prize'ı kazanmak için ilk teşebbüsü
Germain'in Gauss ile mektuplaşmaları kesilince ilgisini the Paris Academy of Sciences tarafından düzenlenen Ernst ile alakalı yarışmaya yöneltti.
Yarışmanın konusu Chladni'nin titreşen metal plakalar deneyi ile alakalı idi. The Academy konuyu 'elastik yüzeylerin titreşimi karşılaştırmaları ve teoriyi deneysel kanıtlar ile göstererek matematiksel bir teori ortaya koymak' olarak açıkladı. Lagrange'ye göre problemi çözümü 2 yarışmacının ortak çalışmasından geçiyordu. Bunlar Denis Poisson ve Germain'di. Sonrasında Poisson Akademi'ye seçildi ve yarışmacı olmak yerine jüri oldu ve Germain yarışmanın tek adayı oldu. 1809'da işe koyulan Germain, Legendre destekleri, denklemleri, referansları ve son araştırmaları üstüne yoğunlaştı. 1811'inin kış başlarında kağıdını teslim etti ve ödülü kazanamadı. Yargılama komisyonu 'doğru denklemler ile ilerleme adımlarının kurulmadığını' belirtti. Ayrıca 'deney beceriksiz bir şekilde sunuldu' dedi. Lagrange Germain'in yaptıklarını kullanarak denklemi 'doğru özel farzetmeler' ile tamamladı.
Ödülü kazanmak için sonraki denemeleri
2 yıl içinde yarışmanın konusu genişletildi ve Germain tekrar denemeye karar verdi. İlk başta Legendre ona destek vermeye devam etmeyi önerdi fakat sonradan tüm yardımı yapmayı reddetti. Germain'in 1813'teki isimsiz yayımlanan ve özellikle ikincil türevi içeren gelişigüzel çalışması matematiksel hatalar ile doluydu ve sadece onur ödülü aldı çünkü 'teorinin ana ilkeleri kurulmamıştı. (elastik yüzey teorisi). Kapsam bir kez daha genişletildi ve 3. kez olarak Germain tekrar çalışmalara başladı. Bu sefer Poisson ile mektuplaşmaya başladı ve 1814'te elastiklik hakkındaki çalışmalarını yayınlayan Poisson Germain'in yardımlarından bahsetmedi. (Birlikte bu konu üzerinde çalışmış olmaları ve Akademi Komisyonunun bilmesine rağmen.)
Germain 3. kağıdını 'Rrecherches sur la therie des surfaces elastiques' adında kendi adıyla 8 Haziran 1816'da yayımladı ve the Paris Academy of Sciences ödülünü kazanan ilk kadın oldu. Ödül seremonisinde ödülünü almak için gözükmedi. Germain'in the Prix Extraordinaire ödülünü almasına rağmen akademi yine de tam olarak tatmin olmadı. Sophie sonunda doğru diferansiyel denklemi elde etti fakat metodunda büyük deneysel hataları içeriyordu ve Euler'den gelen yanlış denkleme güvenmişti ve bu yüzden yanlış sınırları kullanmasına neden oldu. İşte Germain'in son denklemi;[1]
N2 burada bir sabittir.
Akademi yarışını kazanmış olmasına rağmen halen juriye katılamıyordu bunun sebebi ise Akademi'nin kadınları dışlama mantığı ve eşlerinden kaynaklıyordu. Bu gelenek kırıldıktan 7 yıl sonra Germain Akademinin sekreteri olan Joseph Fourier ile arkadaşlık kurdu ve Joseph ona müsabakalara katılma bileti sağladı.
Elastiklik üzerindeki sonraki çalışmaları
Germain 1821'de kendi parası ile ödülü kazanan makalesini yayımladı ve Poisson karşıt olarak sunmak istedi. Makalesinde metodundaki birkaç hatayı belirtti.
1826'da yeniden revize edilmiş makalesini the Academy'ye sundu.Andrea Del Centina'ya göre revizyonu yaptığı çalışmayı açıklayıcı denemeler yani 'varsayımları açıklayıcı yöntemler' içeriyordu. Bu çalışma the Academy'i aksi ve beceriksiz bir konuma soktu çünkü onlar makaleyi 'yetersiz ve önemsiz' olarak bekliyorlardı. Onlar bir kadının 'profesyonel meslektaşlarını tehdit etmemesi adına basitçe Germain'in çalışmasını reddetti. Sonrasında Germain'in çalışmasını gözden gerirmek için atanmış Augustin-Louis Cauchy ona çalışmasını yayımlamasını önerdi ve Germain onun önerisini takip etti.
Elastiklik üzerine bir sonraki çalışması ölümünden sonra 1831 yılında 'Memorie sur la courbure des surfaces' olarak yayımlandı. Çalışması esnasında Ortalama Eğiklik prensibini kullandı.
Sayılar teorisinden sonraki çalışmaları
Yenilenen ilgi
Germain'in en iyi işin "sayılar teorisi"siydi, en önemli katkısını da Fermat'ın Son Teorem'iyle uğraşarak sağladı. 1815'te elastiklik konusundan sonra the Academy Fermat'ın teorisinin ispatına bir ödül koydu ve bu Germain'in ilgisini tekrar Sayılar Teorisi'e uyandırdı ve 10 yıl mektup alamadıktan sonra tekrar Gauss'a yazdı.
Mektupta, Germain teorinin öncelikli alanı olduğunu fakat aklında yine de aynı zamanda elastiklik üzerine çalışmak olduğunu belirtti. Fermat'ın Son Teorem'inin çözümü için bir ana taslak stratejisi geliştirdi ve bunun için içine özel durumların olduğu ispatlar koydu. Germain'in Gauss'a gönderdiği mektup onun ispat yönünde önemli adımlar attığını içeriyordu. Gauss'a bu teorinin takibe değer olup olmadığını sordu fakat Gauss hiçbir zaman cevaplamadı.
Fermat'ın Son Teoremi üzerine çalışmaları
Fermat'ın Son Teoremi 2 parçaya ayrılabilir. İlki tüm p leri içeren ve herhangi bir x,y ve z'ye bölünmeyendir. İkincisi ise tüm p leri kapsayan ve en az 1 tane x,y veya z'ye bölünebilendir.Germain bunu şu şekilde önerdi ve adı 'Sophie Germain's Theorem' olarak değiştirildi.
P 'yi tek bir asal olarak kabul edelim. Eğer ikinci bir asal var ise P = 2Np + 1 (N herhangi bir pozitif tam sayı ve 3 ile bölünebilir) yani;
- 1. eğer xp + yp + zp = 0 (mod P) sonrasında xyz pye bölünebilir, ve
- 2. p, pinci güç kalanı değildir. (mod P).
Sonrasında ilk durum Fermat'ın Son Teori'sine göre p'yi doğruladı.
Germain bulmuş olduğu birinci sonucu kullanarak 100'den küçük bütün asal sayıların durumunu kanıtladı. Andrea Del Centina'ya göre 'p<197'ye kadar tüm üsleride göstermişti. L.E. Dickson sonrasında Germain'in teorisini kullanarak Fermat'ın Son Teoremini 1700'den küçük tüm asal sayıları kanıtladı.
Remarque sur l'impossibilite de satisfaire en nombres entiers a l'equation xp + yp = zp adlı yayınlanmamış el yazmasında Germain Fermat'ın Son Teoremi için karşıt örnekler gösterdi. Örneğin p>5 40 hane uzunluğunda bir sayı olmalı ve hayalde çok büyük olmalıydı. Sophie bu çalışmasını yayımlamadı.Onun en parlak teoremi Legendre'nin tezindeki dipnotlarda yani Fermat'ın Son Teoreminin ispatlanması için p=5 de kullanıldı. Germain ayrıca Legendre'nin bazı çalışmalarını kanıtladı ve bazılarını kanıtlamaya yakınlaştı. Del Centina bu durumu '200 yıl sonra bile onun fikirleri hala merkezde' sözüyle anlatdı fakat en nihayetinde onun çalışması işe yaramıyordu.
Filozofi alanındaki çalışmaları
Matematik çalışmalarına ek olarak Germain felsefe ve psikoloji alanında çalıştı. Germain doğruları sınıflandırmak ve onları psikoloji ve sosyolojinin birer kuralı halinde genellendirmek istiyordu. Felsefe alanındaki çalışmaları Auguste Comte tarafından sıkça övgü ile anılmıştır.
Pensées diverses ve Considérations générales sur l'état des sciences et des lettres, aux différentes époques de leur culture yayımlanmış olan iki felsefi eseri ölümünden sonra yayımlanmıştır. Kuzeni Herbette'nin çabaları sayesinde felsefe yazıları toplanabilmiş ve yayımlanmıştır. Pensees kitabında bilimin tarihini ve matematiği yorumlayarak açıklamıştır. In Considerations, Comte ile ortak çalışması, Sophie insanlık ile bilim arasında hiçbir farklılık bulunmadığını öne sürmüştür.
Son yılları
1829 yılında göğüs kanseri olduğunu öğrendi. Çekmiş olduğu acılara rağmen işine devam etti. 1831'de Crelle'nin gazetesinde elastik yüzeylerin eğriliği hakkındaki yazısını denkleminde y ve z'yi bulmak adına bir not adı altında yayımladı. Mary Gray'in kayıtlarına göre 'Annales de chimie et de physique' adlı inceleme yazısını yayımlayarak denge yasasının bulunması ve elastik cisimlerin hareketi hakkında yeni keşiflerin olmasına yol açmış oldu. 27 Temmuz 1831'de 13 rue de Savoie evinde öldü.
Mezar ve anıtı
Germain'in bedeni Paris'teki Pere Lachaise Cemetery ufalanan işaretli mezar taşında ebediyetini devam ettirmektedir. Yaşamının yüzüncü yılında öldükten sonra, bir sokak ve bir kızlar okuluna onun adı verilmiş. Ayrıca öldüğü eve bir hatırlatıcı bir plaka takılmıştır. Okul evi the Paris City Council tarafından görevlendirilmiştir.
Sayılar teorisindeki onur ödülleri
E. Dubouis Sophie'nin asalını θ'nın θ=kn+1 olduğu yer olarak tanımladı ve n'i θ üzerinden xn = yn + 1 (mod θ) olarak açıkladı ve x ve y'nin n sayısının asalı olduğunu ve bu işlemin çözümünün olmadığını söyledi. Sophie Germain'in asalı p, 2p + 1 gibi bir asal ve Sophie Germain eğritliği olarak açıklayıp k1 ve k2 normal eğilimde maximum ve minimum noktalar olduğunu açıkladı.
Sophie'nin herhangi bir x ve y nin kimliği için belirtmek isteği temek kimlik {x,y} ile
Eleştiriler
Aldığı övgü ve eleştiriler
Vesta Petrovich 1821'de ödülü kazanan Germain'in tezi hakkında 'kibardan farklıya doğru menzillenme' demişti ve eğitilmiş insanın topluma karşı sorumluluğu olduğunu belirtmişti. Halen bile bazı eleştirilere göre aldığı ödül ona fazlaydı. 1821'deki tezinde Cauchy 'yapılan iş ve yazarın ismi ve konunun önemi matematikçilerin ilgisini çekmişti' diye yorumlamıştı.Germain bunlara ek olarak H. J. Mozans'ın kitabında 'Bilimde Kadın' diye geçmiştir. Marilyn Bailey Ogilvie'de Germain'in biyografisinin 'kesinliği olmayan ve güvenilmez notlar ve kaynakçalardan' oluştuğunu belirtmişti. Tüm bunlara rağmen matematikçi Claude-Louis Navier tarafından tırnak içinde gösterilmiş ve 'yapılan işin birçok erkeğin okuyabileceği fakat bir kadının yazabileceği bir iş' olarak değerlendirmesi ise olumlu bir övgü olarak hatırlanmıştı.
Germain akranları bunlara ek olarak onun yaptığı işler hakkında birkaç güzel şey de söylemişti. Osen Sophie'yi 'Baron de Prony onu 19. yüzyılın Hypatia'sı (eski bir yunan filozof, matematikçi ve astronom olan kadın) olarak adlandırmaktaydı' demiştir. J.J. Biot ise Journal de Savants adlı makalesinde matematik ve diğer cinsiyetler arasında kalan kadın olarak yazmıştı. Gauss ise onun hakkında çokça iyi şey düşünmüş ve Avrupa kültürünün bir matematikçi kadın için ne kadar zor olabileceğini ve karşılaştığı zorlukların neler olabileceğini düşünmüştü.
Modern zamanlarda yapılan övgü ve eleştiriler
Modern bakış açısı Germain'i genel olarak büyük bir matematikçi olarak kabullenmiş onun şansın yardımı gerçekleşen eğitiminin, büyük bir içten gelen başarı isteği ile gerçekleştiğini vurgulamıştır. Gray'in açıkladığı gibi 'Germain'in elastiklik hakkındaki çalışmaları genelde kesinlik eksikliği sebebi ile çok sıkıntı çekmesine ve onun yaptığı işlerin analizinin tam olarak yapılamaması ve bir temel bilgi eksikliğine atfedilmişti. Petrovich bunalra ek olarak 'Bu büyük dezavantaja rağmen o genç takdire şayan bir mucize gerçekleştirerek kendi akranı matematikçiler içinde olmaya hak kazanmıştır.
Germain'in titreşim teorisindeki problemlerinin anlaşılmaması, Gray tarafından 'Germain'in yaptığı iş elastiklik teorisindeki ana konuların gelişimi ile alakalıydı' demiştir. Mozans ise Eiffel kulesinin yapımına katkıda bulunan 72 mimar ve bilim adamı arasında Germain'in isminin olmadığını ve inşaata olan desteğinin gözden kaçırıldığını veya dikkate alınmadığını söylemiştir. Mozans 'Sophie neden listenin içinde yok? Kadın olduğu için mi? Öyle gözüküyor' diyerek de bu olaya sitem etmiştir.
Sayılar teorisindeki önceki çalışmaları ile alakalı J. H. Sampson ' O cebirsel matematikteki şekilsel akıllıca kullanırken, aslında the Disqusitiones'i anladığına dair çok az kanıt var iken, onun bizim zamanımıza kadar gelen ve sadece üstünkörü uğraşılan konulardı.' Gray bunlara ek olarak 'Sempatik matematikçilerin onun yaptığı işe övgü etme yatkınlığı yerine direkt eleştiri sağlayan ve onun matematik öğrenmesini sakatlamak istememişlerdir. Bu halde bile Marilyn Bailey Ogilvie ' Sophie Germain'in yaratıcılığı onu saf ve uygulanabilir matematiğini ortaya çıkardı ve hayali ve provakatif birkaç sorun hakkında çözümlere ulaştırdı. Petrovich'in öne sürdüğü şey ise 'Sophie'nin alıştırma alışkanlığından yoksun oluşu ona özel bir öngörü ve yaklaşım yolu vermemiştir' olmuştur. Louis Bucciarelli ve Nancy Dworsky, Germain'in bibliyografisini yazanlar olayı şöyle özetlemiştir. 'Tüm kanıtlar Sophie Germain'in matematiksel mükemmelliğine bu sıkı alıştırma eksinliği olan bir erkeğin ulaşamayacağı yönündedir.'
Popüler kültürde Germain
Germain 2001 yılında David Auburn'un Proof adlı oyununda referans alınmış ve sözleri alıntılanmıştır.Genç matematikçilerin destekçisi ve onlar için mücadele edenlerden Catherine ise Germain'in çalışmalarından çokça esinlenmiştir. Ayrıca John Madde'in film uyarlamalarından aynı oyundaki bir konuşmada Catherine (Gwyneth Paltrow) ve Hal (Jake Gyllenhaal) tarafından seslendirilmiştir.
Arthur C. Clarke ve Frederik Pohl'un yazmış olduğu 'The Last Theorem' adlı hayali çalışmada, Sophie Germain Fermat'ın Son Teoremini çözen Ranjit Subramanian'a adlı karaktere ilham veren kişi olmuştur.
Sophie Germain Ödülü
Sophie Germain ödülü (Prix Sophie Germain) yıldan yıla Sophie Germain adına kurulan fon ile Paris'teki Academy of Sciences tarafından takdim edilmektedir. Temel amacı Fransız matematikçileri onurlardırmak ve çalışmaları sırasında onlara destek sağlayabilecek fonlar oluşturmaktır. Bu ödül, 2003'te 8000 € civarındaydı ve Institut de France'nin himayesi altında verilmekteydi. Son kazananları arasında;
- 2003: Claire Voisin, the Institute of Mathematics of Jussieu University'nin araştırma müdürü, Denis Diderot
- 2004: Henri Brekstycki, the EHESS 'deki araştırma merkezinin araştırma müdürü
- 2005: Jean-François Le Gall, UPMC'de profesör, the Department of Mathematics ve the Ecole Normalde Superieure in Paris ugulamaları tarafından desteklenmiştir.
- 2006: Michael Harris, Jussieu University'de eğitim veren matematik profesörü, Denis Diderot
- 2007: Ngô Bảo Châu, University of Paris-Sud in Orsay'de matematik bölümünde profesör
- 2008: Hakan Eliasson, the Institute of Mathematics of Jussieu University'de profesör
- 2009: Nessim Sibony, the University of Paris-Sud in Orsay'de profesör
- 2010: Guy Henniart, the University of Paris-Sud in Orsay, Matematik Bölümü
- 2011: Yves Le Jan, the University of Paris-Sud in Orsay, Matematik Bölümü
Kaynakça
- Bell, Eric Temple (1937). Men of Mathematics. Simon and Schuster. reprinted as Bell, Eric Temple (1986). Men of Mathematics. Simon and Schuster. ISBN 0-671-62818-6.
- Case, Bettye Anne; Leggett, Anne M. (2005). Complexities: Women in Mathematics. Princeton University Press. ISBN 0-691-11462-5.
- Cipra, Barry (2008). "A Woman Who Counted". Science 319 (5865): 899. doi:10.1126/science.319.5865.899a.
- Del Centina, Andrea (2005). "Letters of Sophie Germain preserved in Florence". Historia Mathematica 32 (1): 60–75.doi:10.1016/j.hm.2003.11.001.
- Del Centina, Andrea (2008). "Unpublished manuscripts of Sophie Germain and a revaluation of her work on Fermat's Last Theorem". Archive for History of Exact Sciences 62 (4): 349–392. doi:10.1007/s00407-007-0016-4.
- Dickson, Leonard Eugene (1919). History of the Theory of Numbers, Volume II: Diophantine Analysis. Carnegie Institution. Reprinted as Dickson, Leonard Eugene (2013).History of the Theory of Numbers, Volume II: Diophantine Analysis. Dover Publications. ISBN 978-0-486-15460-2.
- Dunnington, G. Waldo (1955). Carl Friedrich Gauss: Titan of Science. A study of his life and work. Hafner. Reprinted as Dunnington, G. Waldo; Jeremy Gray; Fritz-Egbert Dohse (2004). Carl Friedrich Gauss: Titan of Science. Mathematical Association of America. ISBN 978-0-88385-547-8.
- Gray, Mary W. (2005). "Sophie Germain". In Bettye Anne Case; Anne M. Leggett. Complexities: Women in Mathematics. Princeton University Press. pp. 68–75. ISBN 0-691-11462-5.
- Gray, Mary (1978). "Sophie Germain (1776-1831)". In Louise S. Grinstein; Paul Campbell. Women of Mathematics: A Bibliographic Sourcebook. Greenwood. pp. 47–55.ISBN 978-0-313-24849-8.
- Mackinnon, Nick (1990). "Sophie Germain, or, Was Gauss a feminist?". The Mathematical Gazette 74 (470): 346–351. doi:10.2307/3618130.
- Moncrief, J. William (2002). "Germain, Sophie". In Barry Max Brandenberger. Mathematics, Volume 2: Macmillan Science Library. Macmillan Reference USA. ISBN 978-0-02-865563-5.
- Mozans, H. J. (pseud.) (1913). Women in Science: With an Introductory Chapter on Women's Long Struggle for Things of the Mind. D. Appleton. pp. 154–157.
- Ogilvie, Marilyn Bailey (1990). Women in Science: Antiquity Through the Nineteenth Century : a Biographical Dictionary with Annotated Bibliography. MIT Press. ISBN 978-0-262-65038-0.
- Osen, Lynn M. (1974). Women in Mathematics. MIT Press. pp. 83–94. ISBN 978-0-262-65009-0.
- Petrovich, Vesna Crnjanski (1999). "Women and the Paris Academy of Sciences". Eighteenth-Century Studies 32 (3): 383–390. JSTOR 30053914.
- Sampson, J. H. (1990). "Sophie Germain and the Theory of Numbers". Archive for History of Exact Sciences 41 (2): 157–161. doi:10.1007/BF00411862.JSTOR 41133883.
- Ullmann, D. (2007). "Life and work of E.F.F. Chladni". European Physical Journal – Special Topics 145 (1): 25–32. doi:10.1140/epjst/e2007-00145-4.
- Waterhouse, William C. (1994). "A counterexample for Germain". American Mathematical Monthly 101 (2): 140–150. doi:10.2307/2324363. JSTOR 2324363.