Yönlü türev
Matematikte verilmiş bir P noktasındaki ve V vektörü boyuncaki çok değişkenli bir fonksiyonun yönlü türevi sezgisel olarak fonksiyonun P noktasında, V vektörü boyuncaki anlık değişim oranını temsil eder. Bu yüzden, kısmi türev fikrinin genelleştirmesidir çünkü kısmi türevler alınırken yön her zaman koordinat eksenlerine paralel olarak alınmaktadır.
Yönlü türev, Gâteaux türevinin özel bir durumudur.
Tanım
Bir skaler fonksiyonunun bir vektörü boyuncaki yönlü türevi
limiti tarafından verilen fonksiyondur.
Bazı yazarlar yerine Dv 'yi de kullanmaktadırlar. Eğer fonksiyonu 'te türevlenebilir ise, o zaman yönlü türev herhangi bir vektörü boyunca vardır ve
olur. Burada, sağdaki gradyanı, ise Öklid iç çarpımını temsil etmektedir. Herhangi bir noktasında, 'nin yönlü türevi, 'deki vektörü boyunca noktasındaki değişim oranını temsil etmektedir. Yukarıdaki tanım her ne kadar herhangi bir vektör (hatta sıfır vektörü) için tanımlı olsa da, genelde yönler birimleştirilmiş olarak alınır ki böylece birim vektör olur.[1]
Özellikler
Sırdan türevin birçok özelliği yönlü türev için de geçerlidir. Bunlar, bir p 'nin komşuluğunda tanımlı ve p 'de türevlenebilir olan herhangi bir f ve g fonksiyonları için şu özellikleri kapsar:
- Toplama kuralı:
- Sabir çarpan kuralı: Herhangi bir c sabiti için,
- Çarpma kuralı (veya Leibniz yasası):
- Zincir kuralı: Eğer g, p 'de türevlenebilir ise ve h, g(p) 'de türevlenebilir ise, o zaman
Diferansiyel geometri
M, bir türevlenebilir manifold ve p, M 'nin noktası olsun. f, p 'nin komşuluğunda tanımlı ve p 'de türevlenebilir bir fonksiyon olsun. Eğer v M 'ye p noktasında teğet vektör ise, o zaman f 'nin v boyuncaki yönlü türevi (değişik şekillerde (Kovaryant türev), (Lie türevi) veya olarak da gösterilir.), şu şekilde tanımlanabilir: γ : [-1,1] → M, γ(0) = p ve γ'(0) = v olan türevlenebilir bir eğri olsun. O zaman yönlü türev
ile tanımlanır. Bu tanımın, γ, γ'(0) = v olacak şekilde seçildiği sürece, γ 'nın seçiminden bağımsız olduğu kanıtlanabilir.
Normal türev
Normal türev, uzaydaki bir yüzeye normal (yani dik) yönde veya daha genel bir şekilde bir hiperyüzeye dik olan normal vektör alanı boyunca alınan bir yönlü türevdir. Örnek olarak Neumann sınır koşulunu görünüz. Eğer normal yön ile gösterilirse, o zaman ƒ 'nin yönlü türevi bazen ile gösterilir.
Ayrıca bakınız
- Lie türevi
- Diferansiyel form
- Yapı tensörü
Kaynakça
- Bakınız Tom Apostol (1974), Mathematical Analysis, Addison-Wesley, ss. 344-345, ISBN 0-201-00288-4