Babil rakamları

Asur-Keldani Babil çivi yazısı rakamları, kalıcı bir kayıt oluşturmak için, sertleşmek üzere güneşe maruz bırakılacak yumuşak bir kil tablete bir işaret yapmak için, kamıştan yapılmış kama uçlu bir kalem kullanılarak Çivi yazısıyla yazılmıştır.

Babil çivi yazısı rakamları

Astronomik gözlemleri ve hesaplamaları (icat ettikleri abaküs yardımıyla) ile ünlü olan Babil, Sümer veya Eblaite medeniyetlerinden miras kalan altmış altmışlık (60 tabanlı) bir konumsal sayı sistemi kullandılar.[1] Öncüllerin hiçbiri konumsal bir sistem değildi (rakamın 'sonunun' birimleri temsil ettiği bir düzene sahipti).

Kökeni

Bu sistem ilk olarak MÖ 2000 civarında ortaya çıktı;[1] yapısı, Sümer sözcüksel (lexical) sayılarından ziyade Semitik dillerin ondalık sözcüksel sayılarını yansıtır.[1] Bununla birlikte, 60 için özel bir Sümer işaretinin kullanılması (aynı sayı için iki Semitik işaretin yanında) Sümer sistemiyle bir ilişkiyi gösterir.

İşaretler

Babil sistemi, belirli bir basamağın değerinin hem basamağın kendisine hem de sayı içindeki konumuna bağlı olduğu bilinen ilk konumsal sayı sistemi olarak kabul edilir. Bu son derece önemli bir gelişmeydi çünkü yer-değeri olmayan sistemler, bir tabanın her kuvvetini (on, yüz, bin vb.) temsil etmek için benzersiz semboller gerektiriyor ve bu da hesaplamaları daha zor hale getirebiliyordu.

Yalnızca iki sembol ( birimleri saymak ve onları saymak için), 59 sıfır olmayan basamağı işaretlerle göstermek için kullanılmıştır. Bu semboller ve değerleri, Roma rakamlarına oldukça benzer bir işaret-değer gösteriminde bir rakam oluşturmak için birleştirildi; örneğin, kombinasyonu 23 rakamını temsil etmektedir (aşağıdaki rakamlar tablosuna bakınız). Modern sıfıra benzer şekilde, değeri olmayan bir yeri belirtmek için bir boşluk bırakıldı. Babilliler daha sonra bu boş yeri temsil edecek bir işaret tasarladılar. Taban noktası (Radiks noktası) fonksiyonuna hizmet edecek bir sembolden yoksundular, bu nedenle birimlerin yerinin bağlamdan çıkarılması gerekiyordu: 23 veya 23x60 veya 23x60x60 veya 23/60 vb. şeklinde temsil edebilirdi.

Onların sistemleri, rakamları temsil etmek için açıkça dahili ondalık sayı sistemini kullandı, ancak bu, 10 ve 6 tabanlarından oluşan bir karma taban sistemi değildi, bir rakam dizesindeki yer değerleri tutarlı olarak 60 tabanındayken ve bu rakam dizeleriyle çalışmak için gereken aritmetik de buna göre altmışlık iken, on alt-tabanı sadece ihtiyaç duyulan büyük rakamlar kümesinin temsilini kolaylaştırmak için kullanıldı.

Altmış tabanlı miras, derece (bir çemberde 360° veya bir eşkenar üçgenin bir açısında 60° olarak) biçiminde, dakika ve saniye olarak trigonometride ve zaman ölçümünde bugün hala hayattadır, bu sistemlerin her ikisi de aslında karma tabanlıdır.[2]

Yaygın bir teori ise, bir üstün yüksek derecede bileşik sayı olan 60'ın (serideki bir önceki ve bir sonraki sayılar 12 ve 120'dir), asal çarpanlara ayrılması nedeniyle seçilmesidir: 2x2x3x5, bu da onu 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 ve 60 ile bölünebilir kılar. Tam sayılar ve kesirler de aynı şekilde temsil edildi - bir taban noktası yazılmadı, bunun yerine ifade edilmek istenen değer bağlam tarafından açıklandı.

Sıfır

Babillilerin teknik olarak sıfır sayısı için bir rakamı veya kavramı yoktu. Hiçlik fikrini anlamalarına rağmen, bu bir sayı olarak görülmüyordu - yalnızca bir sayı eksikliğiydi. Daha sonra Babil metinlerinde sıfırı temsil etmek üzere bir yer tutucu () kullanıldı, ancak 100 gibi sayılarda yaptığımız şekilde sayının sağ tarafında değil, yalnızca sayı eksikliğini gidermek üzere sayıların orta konumlarında.[3]

Ayrıca bakınız

Kaynakça

  1. Chrisomalis, Stephen (2010). Numerical Notation: A Comparative History. Cambridge New York: Cambridge University Press. ss. 247-248. ISBN 978-0-521-87818-0. OCLC 630115876.
  2. "Why is a minute divided into 60 seconds, an hour into 60 minutes, yet there are only 24 hours in a day?". 5 Mart 2007. 21 Ocak 2014 tarihinde kaynağından arşivlendi. Erişim tarihi: 28 Aralık 2020.
  3. Lamb, Evelyn (31 Ağustos 2014), "Look, Ma, No Zero!", Scientific American, Roots of Unity

Bibliyografya

Dış bağlantılar

İlave okumalar

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.