Çarpıklık

Çarpıklık (İngilizce: skewness; Fransızca: asymétrie) olasılık kuramı ve istatistik bilim dallarında bir reel-değerli rassal değişkenin olasılık dağılımının simetrik olamayışının ölçülmesidir.

Sıfır olmayan çarpıklık gösteren deneysel veri örneği

Giriş

Grafikte gösterilen dağılım incelensin. Dağılımın sağ tarafında bulunan çubukların küçülmelerinin şekli sol taraftakı çubukların küçülmelerinden farklı bir görünüm vermektedir. Çubuk yüksekliklerinin küçüldükleri taraflara kuyruk adı verilir. Genel olarak iki çeşit olan çarpıklığın bilinmektedir.

Grafikteki kuyrukların görüntüsü dağılım için hangi tip çarpıklık olduğunu gösterir. Bu iki türlü çarpıklık ve bunu açıklayan grafiğin kuyruk konumu şunlardır:

  • Pozitif çarpıklık: Bu halde sağdaki kuyruk daha uzundur. Dağılımın kütlesi grafiğin sol tarafında konsantre olmustur. Bu türlü dağılım sağdan çarpık olarak anılır.
  • Negatif çarpıklık: Bu halde soldaki kuyruk daha uzundur ve dağılımın kütlesi grafiğin sağ tarafında konsantre olmustur. Bu türlü dağılım soldan çarpık olarak anılır.

Tanımlama

Çarpıklık üçüncü standardize edilmiş moment olup bu matematik notasyonla

olarak ifade edilmekte ve şöyle tanımlanmaktadır

Burada üçüncü ortalama etrafındakı moment olarak ve standart sapma olarak ifade edilmektedirler. Aynı şekilde, çarpıklık üçüncü kümülant olan ile ikinci kümülantın (yani nın) kare kökünün üçüncü üssü olarak tanımlanmaktadır.

Bu tanımlama, basıklık tanımlanmasına bir analog benzetmedir; çünkü basıklık dördüncü kümülant ile ikinci kümülantın kare kökünün dördüncü üssü ifadesine bölümu arasındaki orantı ile ifade edilmektedir.

n sayıda gözlemi bulunan bir örneklem için örneklem çarpıklığı şöyle tanımlanır:

burada ith örneklem değeri, örneklem ortalaması, örneklem üçüncü merkezsel momenti ve örneklem varyans olur

Eğer veriler örneklem içinse ve bilinen bir anakütleden gelmekte iseler, yukarıdaki formülleri kullanarak elde edilen örneklem çarpıklık ölçüleri için bilinmeyen reel anakütle çarpıklık ölçüsünün bir yanlı kestiricisi olduğu bilinmaktedir. Bu nedenle bazı istatistikçiler yanlı olmayan çarpıklık kestiricisi olarak şu formülün kullanılmasını tavsiye ederler:

Burada üçüncü kümülantin tek simetrik yanlı olmayan kestricisi ve ikinci kümülantın simetrik yansız kestiricisi olur. Ne yazıktır ki, buna rağmen de genel olarak yanlı bir kestiricidir. Bu kestiricinin beklenen değeri gerçek anakütle çarpıklık ölçüsunun ters işaretinde bile olabilmesi mümkündür.

Bir rassal değişken olan X için çarpıklik matematik kısaltma ile Çarp[X] olarak ifade edilsin. Eğer Y n tane bağımsız rassal değişkenlerin toplamından oluşuyorsa ve her bir X dağılımı birbiri ile ayni ise, Y nin çarpıklığı şöyle gösterilebilir

Çarp[Y] = Çarp[X] / n.

Çarpıklık özelliği birçok alanda pratik yarar sağlamaktadır. Pratik sorun çözümleri elde etmek için çok defa basitleştirilmiş model kullanılıp verilerin normal dağılım gösterdiği varsayılır. Bu varsayıma göre veriler ortalama etrafında simetrik olarak dağılmaktadırlar. Halbuki pratikte veriler çok defa kusursuzca simetrik değildirler. Böylece, verilerin çarpıklığını anlamak, kullanılan ortalamanın ne kadar simetriklikten uzak olabileceğini ve ne yönde veri merkezinin kullanılan ortalamadan değişik olacağını anlamaya yol açacaktır.

Pearson'un çarpıklık katsayıları

Karl Pearson çarpıklık ölçülmesi için iki basit şekilde kestirim ölçüsü önermiştir. Bunlar

Ancak aynı veriler için, bu iki kestirim ölçüsünün aynı işarette olacağına ve eğrilerinin işaretinin grafikle görülebilen artı/eksi çarpıklık özelliğine benzeyeceğine hiçbir garanti bulunmamaktadır.

Yeni Bir Öneri

2014 yılında yayınlanan İstatistikte Altın Oran adlı bir kitapta, yeni bir çarpıklık katsayısı önerilmiştir.[1][2]

Coefficient of Skewness (G)

Hesaplama; medyanın sol tarafındaki elemanların medyandan farklarının toplamının, medyanın sağ tarafındaki elemanların medyandan farklarının toplamına oranıdır. Eğer veri dizisinde, medyanın son tarafındaki elemanların medyandan farklarının toplamı (sol tarafın yükü), medyanın sağ tarafındaki elemanların medyandan farklarının toplamına (sağ tarafın yükü) eşitse, G = -1 olmaktadır. G = -1, tam simetri durumunu işaret eder. veri dizisinin medyana göre solu ile sağı, yük bakımından dengelidir. G, -1'den küçükse, medyanın sol tarafının yükü sağ tarafının yükünden fazladır dolayısıyla veri dizisi sola çarpıktır (veri dizisinin kuyruğu soldadır). G, -1'den büyükse, medyanın sağ tarafının yükü sol tarafının yükünden fazladır dolayısıyla veri dizisi sağa çarpıktır (veri dizisinin kuyruğu sağdadır). İstatistik literatüründe kullanılan diğer çarpıklık belirleme metodlarından farkı, veri dizisinin eleman sayısından bağımsız çalışabilmesi ve üstel (logaritmik vs) operatör içermediği için veri dizisinin formasyonundan bağımsız olmak üzere, çarpıklığı nicel olarak hesaplamaya olanak sağlamasıdır.

Ayrıca bakınız

  • Çarpıklık rizikosu
  • Basıklık
  • Basıklık rizikosu
  • Biçim parametreleri

Kaynakça

  1. Www.goldenratioinstatistics.com/calculate.aspx
  2. Gunver, Mehmet Guven; Senocak, Mustafa Sukru; Vehid, Suphi (2017)  "To determine skewness, mean and deviation with new approach to contiuous data" PONTE International Journal of Sciences and Research Cilt:73/2 (Subat), " 2 Haziran 2018 tarihinde Wayback Machine sitesinde arşivlendi. doi:10.21506/j.ponte.2017.2.34

Dış kaynaklar

  • Spiegel, Murray R, ve Stephens, Larry J. (Tr.Çev.: Çelebioğlu, Salih) (2013) Istatistik, İstanbul: Nobel Akademik Yayıncılık ISBN 9786051337043
  • Günver, Mehmet Güven; Șenocak, Mustafa Şükrü ve Vehid, Suphi (2014) İstatistikte Altın Oran, İstanbul:Türkmen Kitabevi, ISBN : 976054749409
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.