Gerçel fonksiyon
Gerçel fonksiyonlar, matematiksel analizin özellikle reel analizin klasikleşmiş nesneleridir.Bu bağlamda, gerçek değerli bir fonksiyonun aynı zamanda tanım kümesini gerçek sayıların oluşturduğu gerçek değerli fonksiyon anlamına geldiği söylenebilir.Ancak, Fourier Analizinde olduğu gibi, kimi zaman tanım kümesi reel olup, görüntü kümesi karmaşık sayılardan oluşan kompleks fonksiyonların da gerçek değişken kabul edildiği olur.
Fonksiyon | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x ↦ f (x) | |||||||||||||||||||||||||||||
tanım ve değer kümesine göre | |||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Sınıflar/özellikler | |||||||||||||||||||||||||||||
Sabit · Birim · Doğrusal · Polinom · Rasyonel · Cebirsel · Analitik · Yumuşak · Sürekli · Ölçülebilir · Birebir · Örten · Birebir örten | |||||||||||||||||||||||||||||
Yapılar | |||||||||||||||||||||||||||||
Kısıtlama · Bileşim · λ · Terslik | |||||||||||||||||||||||||||||
Genellemeler | |||||||||||||||||||||||||||||
Parçalı · Çokdeğerli · Kapalı | |||||||||||||||||||||||||||||
1920'lere, fonksiyon analizinin başlangıcına değin gerçel fonksiyonların öğretisi matematiksel analizinn en çok uğraş gören iki alt biriminden biriydi.Diğeri de kompleks analiz olarak da bilnen karmaşık değişkenli fonksiyonlara dair öğretiydi.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.