Kenarortay
Kenarortay üçgende bir kenarın orta noktasını karşı köşeye birleştiren doğru parçası. Kenarortayların kesiştiği noktaya o üçgenin ağırlık merkezi denir ve G harfi ile adlandırılır.
Bir üçgende ağırlık merkezi kenarortayı ikiye bir oranında böler. Yani bir üçgende köşeye A, kenarortayın kenarı kestiği noktaya D dersek;
Geometri | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||
Dalları
|
||||||||||
Sıfır boyutlu |
||||||||||
Geometriciler | ||||||||||
İsme göre
|
||||||||||
Döneme göre
|
||||||||||
Kenarortay formülleri
Kenarortay uzunluğu
Bir üçgende kenarortayın uzunluğunu bulmak için;
- bağıntısı kullanılır.
Eğer tüm kenarortaylar için bu eşitlik yazılır ve taraf tarafa toplanırsa şu eşitlik elde edilir:
İspatı
Kenarortayın kenarı kestiği noktada bir açıya x, diğer açıya 180-x yazılırsa ve iki defa kosinüs teoremi uygulanıp taraf tarafa toplanırsa kenarortay teoremi elde edilir.
Dik üçgende kenarortay
Bir dik üçgende A noktasından hipotenüse ait çizilen kenarortay doğru parçası hipotenüsün yarısına eşittir (Muhteşem üçlü):
Bir dik üçgende dik kenarlara ait kenarortaylarının karelerinin toplamı hipotenüse ait kenarortayın karesinin beş katıdır:
İspatı
Şu bağıntıyı yukarıda görmüstük:
Hipotenüs c kabul edilirse Pisagor teoremi gereği a2+b2 yerine c2 yazılır. Muhteşem üçlüye göre c yerine 2Vc yazılıp düzenlenirse eşitlik elde edilir.
Dik kesişen kenarortaylar
Eğer bir üçgende herhangi iki kenarortay dik olarak kesişiyorsa bu bağıntılar ortaya çıkar:
- ve dik kesişen kenarortaylar olmak üzere;
Kenarortayın izdüşüm uzunluğu
Bir kenar üzerindeki yükseklik ile kenarortayı birleştiren doğru parçası kenarortayın izdüşümüdür ve uzunluğu(x) şu formülle hesaplanır: